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Note: in the main text, for clarity sake, the formulation of convolution was written in a 
slightly simplified way. Thus, the functions  and P R  have a meaning that is slightly different 
here and in the main text. 
In this document, the functions are expressed as continuous, which corresponds to a physical 
or physiological point of view. When activities are measured with a camera with a finite 
frame rate, the functions become discrete and the formulation should be modified, taking into 
account the sampling rate (this is out of the scope of this document). 
 

 

A Renal retention function 
This paragraph is considered as common knowledge to help less familiarised readers to 
understand what follows. Readers may refer to papers by Lawson (53), Peters (11), Wyman 
(212) of Bassingthwaighte (213) for more detailed information. 

Let us use the following notations: 

• F  is the renal plasma flow (assumed constant here) 
• E  is the extraction ratio 
• EF  is the renal clearance i.e. the individual function 
•  is the plasma concentration of tracer over time ( )P t

• Ks  is the renal detection sensitivity (i.e. number of cpm divided by number of Bq) 

•  is the cardiac detection sensitivity Cs

• Kv  is the renal blood volume in the ROI 

•  is the cardiac blood volume in the ROI Cv

• ( )0K t  is the tracer content of kidney 

•  is the renogram corrected for interstitial activity ( )K t

• ( )0R t  is the normalised retention function  

• ( )R t  is the scaled retention function 

• ( )MR t  is the modified retention function, after removing the vascular phase 

• ( ),0MR t  is the modified retention function, after removing the vascular phase and 
normalising the plateau to 1 

•  is the transport function (transit time spectrum) h
•  is the normalised transport function (with an integral normalised to 1) 0h
• ( )I t  is the input function to the kidney (flow of activity) 

• ( )U t  is the activity that is leaving the kidney ROI through urine 
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•  is the activity in the cardiac ROI corrected for interstitial activity ( )C t

The activity in the kidney is the sum of the vascular activity, plus the activity extracted by 
kidney minus the activity that has left the renal ROI. Indeed, the resolution of renal scan 
cannot separate vessels from parenchyma. Therefore: 

 
( ) ( )

0 0

t t

K KK t s v P t EF P U
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

∫ ∫
 <eq. 1> 

When now considering a single molecule of tracer, let us define 0R  as the normalised 
retention function i.e. as the probability that a molecule that entered the kidney at time 0 still 
remains at time t . This function 0R  is a probability so its values range from 0 to 1. If the 
molecule can have different pathways inside the kidney (vessels, nephrons,… do have various 
lengths), one can easily imagine that the time that it will stay in the renal ROI is not always 
the same so there is a distribution of transit time and the probability will have the pattern 
described in Figure 2 (see main text). This is for a single molecule. However, as the kidney 
will receive tracer with a varying concentration along time, the tracer in the renal ROI will be 
the sum of all individual contributions from the molecules that arrive. If the tracer were 
injected directly into the renal artery, as an elementary bolus, without any recirculation, the 
renal content would be given by 0R  times the injected activity. In real life, the kidney receives 
as an input (in the renal artery) a function I  which can be described as a successive of 
infinitesimal bolus injections shifted in time. The kidney response to each of these small bolus 
injections will be the function 0R  scaled to the amount injected at each instant, and shifted in 
time. Therefore, the response to the input function I  will be the sum of all these individual 
responses given by the following: 
• sum over all injections, each one made at time τ  
• the kidney response at this time is given by the function 0R  
• to see what is the response at time t , 0R  must be taken at time t , shifted by τ−  to take 

into account the fact that injection wad delayed by a time τ , this gives ( )0R t τ−  

• scale this response by the amount injected at time τ , which is ( )I dτ τ⋅   

So , the renal content of tracer in the ROI is expressed as a convolution product (see 
Figure 5 in main text): 

0K

 ( ) ( ) ( ) ( )0 0 0K t R I t R t I dτ τ τ⎡ ⎤= ∗ = − ×⎣ ⎦ ∫
�

 <eq. 2> 

One must take care that the convolution product is a product of functions (not numbers!) so 
the commonly encountered formulation ( ) ( )0R t I t∗  is not correct (214). 

 

 

In this equation,  is in Bq, 0K I  in Bq/s and 0R  is adimensional (the convolution product is 
an equivalent to integrating over time). In practice, one does not know  but rather 0K K , the 
detected activity in the ROI, i.e. the renogram. The relationship between K  and  is given 
by the detection sensitivity: 

0K

 0
KK s K= ×  <eq. 3> 
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where Ks  is expressed in cps/Bq. The input function I  is the product of the renal plasma flow 
by the concentration of tracer in the renal artery: 

 I F P= ×  <eq. 4> 
If we assimilate the renal artery concentration to the cardiac concentration,  can be assessed 
by the detected activity  in a cardiac ROI: 

P
C

 C CC s v P= × ×  <eq. 5> 
where  is the blood volume detected in the ROI and  the corresponding detection 
sensitivity. From <eq. 2> to <eq. 5>, we infer: 

Cv Cs

 0K

C C

s FK C
s v

⎡ ⎤
R= ∗⎢ ⎥

⎣ ⎦
 <eq. 6> 

A deconvolution process applied on the detected activities K  and C  will provide the scaled 
retention function R , i.e. the function defined by 

 K R C= ∗  <eq. 7> 
From <eq. 6> and <eq. 7>, we can infer the relationship between R  and 0R : 

 0K

C C

s FR R
s v
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 <eq. 8> 

Initially, all the tracer is inside the kidney. This initial vascular peak lasts a time VTT 
(vascular transit time). So, when , the value of VTTt < 0R  is 1 so: 

 ( ) K
V

C C

sR t R F
s v

= =  <eq. 9> 

which is proportional to the RBF. Absolute knowledge of the RBF would however require to 
know , Cs Ks  and . Here, for clarity sake, we have supposed that the vascular transit time 
VTT is unique. In some papers, the first vascular plateau is considered as infinitely short 
(Dirac distribution). After the vascular peak, either the molecule has not been extracted 
(probability 1

Cv

E− ) so it leaves the kidney, or it has been extracted (probability E ) so it 
remains in the kidney during a time that is called RTT (renal transit time) when R  stays at a 
plateau. Therefore when  and VTTt > minTTt < , the value of 0R  is E  so: 

 ( ) K
K

C C

sR t R EF
s v

= =  <eq. 10> 

The plateau value KR  is then proportional to the renal function. Thus, assuming that Ks  is the 
same for both kidneys, the plateau value can be used to determine relative function (proved in 
comparison with Patlak (13)). This may however not be precise enough to warrant an 
acceptable function assessment (49). When , minTTt > R  starts to decrease again until no 
tracer remains in the renal ROI, so the general shape for R  is given by Figure 3 in main text. 

Note that here, due to the external detection technique, the measured RRF R  and the true 
RRF 0R  are different (as expressed in equation 8). The "scaling factor" between the two has 
the dimensions of inverse time. However, whereas this point would be relevant to determine 
absolute renal function, it is irrelevant for transit times. 
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B Determining transit times 
The VTT, RTTmin and RTTmax can be read directly from the curve. In order to determine the 
mean renal transit time RTTmean, it is necessary to remove the vascular part from R , which 
can be done by back extrapolation of  the plateau (see Figure 1). With this modified function, 
named MR , it is easy to see that the mean transit time is given by: 

 0
minTT

M

K

R

R

∞

=
∫

 <eq. 11> 

where (max M
K )R R= . Instead of recording what is inside the kidney, one can record what 

has left the kidney: this is given by the function M
KH R R= − . The derivative of H , known 

as the transport function, or also as transit time spectrum, is defined as: 

 ( ) ( ) ( )'' Mh t H t R t= = −  <eq. 12> 
and gives the distribution of transit times. Then, convoluting the transport function with the 
input function gives the urinary organ output: 

 U h C= ∗  <eq. 13> 
The mean transit time can also be calculated from  by: h

 
( )

( )
0

0

mean

t h t dt
TT

h t dt

∞

∞

⋅
=
∫

∫
 <eq. 14> 

Since Kh R=∫ , instead of using the functions R  and , one can use normalised 
variants(215): 

h

 ,0 1M M

K

R R
R

= ⋅  <eq. 15> 

and 

 0 1

K

h
R

h= ⋅  <eq. 16> 

for which ( ),0max 1MR = and 0 1h =∫ . This has the drawback of loosing the functional 
information but it slightly simplifies the calculations for the transit time; with these 
normalised functions: 

 ,0M
meanTT R= ∫  <eq. 17> 

 ( )0
meanTT t h t dt= ⋅∫  <eq. 18> 

Because the end of the plateau is not easy to determine, RTTmin can be defined by using the 
point when the RRF falls under 90% of the plateau value (216). 
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Figure 1 – Summary of the main functions used 
 

B.1 Deconvolution techniques 
In the equation   , the corrected renogram K R C= ∗ K  and the corrected cardiac input C  are 
known by renal scan. The continuous equation 

 ( ) ( ) ( )K t C R t dτ τ τ
+∞

−∞
= × −∫  <eq. 19> 

after sampling and considering a null activity before times zero, gives: 

 
0

k

n k
k

K C R
=∞

n k−
=

= ×∑  <eq. 20> 

where  stands for ,  being the sampling time. Assessment of transit requires 
inversion of this equation to get 

nK ( )K n t×∆ t∆
R . The process is called deconvolution. Continuous 

deconvolution leads to an integral equation with no general solution. However, deconvolution 
techniques exist for discrete data (217). This could be performed by “exact” methods or by 
“non-exact methods”. After deconvolution, RTT can be assessed on curve H  as explained in 
paragraph 4.2. 
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B.1.1  “Exact” (or analytic) methods 
All the following methods aim at finding the retention function that, when convoluted with 
the input function, would recreate the renogram. Accuracy could be considered as the goal 
and these methods considered as ideal. However, one should keep in mind that the primary 
goal is to assess a physiological parameter in a patient, not to solve a mathematical equation. 
Indeed, if the acquired data are imperfect – which they are – this could lead to a result that is 
much farther from the truth than with other (non-exact) methods (53). Also, even if they are 
“exact”, edge effects, choice of a given matrix… may induce differences between the results 
provided by these methods. The term ‘exact’ must be understood here as ‘free of any a priori 
information’. 

Matrix inversion B.1.1.1 
The principle of the matrix method is simple: because nothing was injected before time 0, I  
only takes non-null values for positive indices; the same is true for H  because the kidney 
response needs to be causal. Therefore, one can write: 

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3

K R I
K R I R I
K R I R I R I
K R I R I R I R I

=⎧
⎪ = +⎪⎪ = + +⎨
⎪ = + + +⎪
⎪⎩M

0

0

1

2

3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 

This is a set of N  equations with  unknowns, which can be written with the matrix 
formalism as: 

N

0 0

1 1 0

2 2 1 0

3 3 2 1 0

0 0 0
0 0

0

K I R
K I I R
K I I I R
K I I I I R

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜= ×
⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

L

L

L

L

M M M M M O M

 

This equation can be solved in an exact way by inverting the second matrix, which is easy 
even for very large numbers because it is triangular. However, the result may be strongly 
dependent on the first values so any error in the beginning of K  or I  will propagate and be 
amplified. This method is therefore very sensitive to noise (53). Indeed, because of this 
sensitivity this method is called ill-conditioned. This means that a very slight variation of the 
input data, especially in the first points, could result in a huge variation of the result 
(214,215). This method has been widely used, maybe because of its simplicity (the basic 
algorithm taking just a few lines of program code). Some authors chose to cut off any leading 
point before the maximum activity point in the input function, which increases the 
deconvolution stability. 

Fourier-transform method B.1.1.2 
From the equation K I R= ∗ , by Fourier-transformation, one obtains K I= ∗F F F R  where 

 designs the Fourier-transform. Therefore, F R can be easily obtained by inverse-Fourier 
transform: 

-1 KR
I

⎛ ⎞
⎜ ⎟
⎝ ⎠
F= F
F
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This also is an exact transform. However, in practice, Fourier-transform is usually performed 
on powers of 2. This implies to zero-pad the original functions and induces truncation 
artefacts (24), with rapid oscillations. One may use some ‘cut-off’ level to remove high 
frequency noise. Moreover, windowing the data entails periodising it for Fourier transform 
(218). Therefore, this method does not provide the same results as the matrix inversion. Data 
truncation is associated to high sensitivity to noise (24). To avoid this, it is recommended to 
apodise (filter) the function at its end (219). Therefore, though Fourier transform method is, 
from a theoretical point of view, an exact method, in practice, the results obtained may differ 
from those obtained by the matrix method. A comparison between Fourier and matrices 
showed that the results were very close together (220). 

Laplace Transform method B.1.1.3 

B.1.1.4 

B.1.1.5 

Laplace transform method is a similar technique when Fourier transform is replaced by 
Laplace-transform.(9). If the input function is expressed as a sum of exponentials, the 
calculation can be made analytically and the exponential fitting removes noise from the input 
function, which makes the calculation of MTT robust to noise (221, 222). Exponential fitting 
the input function entails neglecting the initial ascending part of the blood curve, which may 
be a source of error (223). Indeed, an input function on kidney (with recirculation) does not 
look like a sum of exponentials(56, 224); indeed, it is usually taken from a so-called “gamma-
fit” at its beginning (225). Unlike the Fourier method, the Laplace method does not assume 
periodicity so it is quite immune to late oscillation of RRF. It is also more noise proof than 
unfiltered matrix method (220) 

Orthogonal polynomials 
Like the Fourier and Laplace techniques, this method projects the data onto a basis, which is 
here a series of Legendre polynomials. The original paper claimed this technique more robust 
than matrix inversion or Fourier inversion technique (226) but this method was not reassessed 
in further published studies. 

z-transform method 
Neufeld developed a formalism with the z-transform, noticing that it is the discrete version of 
Laplace transform and that it can be considered as division of polynomials (227). Berehi also 
proposed to use the z-transform for deconvolution but showed that this method reduces to the 
matrix inversion (228).  

B.1.2 Non-exact (or approximate) methods 
The four previous methods can be called « exact-methods » because they aim at delivering the 
function H  that, when convoluted with the function I , will give you back the function K . 
However, one must keep in mind that this is a mathematical point of view, neglecting any 
errors on the measured functions K  and I . In real life, these functions are only known with 
errors (biases and Poissonian noise) so the aim is not to get the function H  that will fit the 
best the equation, but the function H  that will match the best the behaviour of the kidney. It 
was shown by simulation that, except when noise is very low, unfiltered “exact methods” 
perform very poorly in producing reliable results (216). Indeed, small uncertainties in the 
measured data may lead to considerable error. This is analogous to the ‘butterfly effect’ and 
occur when the problem is ill-conditioned. Filtering is one solution. Other methods can also 
be used, that will provide “less-exact” results from a purely mathematical point of view, but 
more realistic results from a physiological point of view. All of these methods inject some a 
priori information into the model to avoid to get an unrealistic solution. The result is not the 
more probable solution in the absolute (which is given by unfiltered “exact” methods) but it is 
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the more probable solution given some a priori assumptions in a Bayesian approach. This 
technique is called regularised inversion or constrained solutions (53, 218). 

Model-Fitting (constrained least-squares) B.1.2.1 
These methods also consist in solving the equation K I R= ∗ , i.e. finding R  but here, this is 
performed by optimisation (iterative process), under physiological constraints.(i.e. the renal 
retention function R  must be positive and monotonic (decreasing) (72, 229), or may be 
“smooth” or may use a constraint based on noise distribution ) (216, 230). Such a model-
fitting would be preferable than exact deconvolution for low-count data such as vascular 
transit time (18). This technique also proved more reliable to assess MTT than exact solutions 
when transit was slow (216). 

Rutland’s methods without deconvolution B.1.2.2 
In the Patlak-Rutland approach, the renogram can be expressed as: 
 ( ) ( ) ( )

0

t
K t aP t EF P U t= + −∫  <eq. 21>   

where ( )U t  is the output (what has left the renal ROI). Therefore, after determination of , it 
is easy to get a corrected renogram: 

a

 
 ( ) ( ) ( ) ( )

0

t

CK t K t aP t EF P U t= − = −∫  <eq. 22>   

By making the assumption that the transit time is unique, of value T  , then the output in just 
the input shifted in time by T : 
 ( )

t T

T
U t EF P

−

−
= ∫  <eq. 23>  

 ( )
t

C t T
K t EF

−
= P∫  <eq. 24> 

It is then easy to find T  from  and  (231). This could be done for any point of the curve. 
In a further article, it was even proposed to compute T  for various times t  to obtain a RRF 

(232). This however is not coherent with the assumption of a single transit time upon 
which this technique relies. This technique was shown to provide only an approximation of 
transit time (212, 233). 

CK P

( )T t

Patlak-Rutland plot differentiation or “database 
deconvolution” 

B.1.2.3 

In Patlak-Rutland plot, the experimental points are initially aligned to form a straight line. 
When some tracer starts getting out of the ROI, this model is no longer true. By deriving this 
plot, one will obtain a constant value before minimal transit time and a decreasing value after. 
This has a behaviour that is very close to RRF. Rutland suggested that deriving the Patlak-
Rutland plot would provide an estimation of RRF. The similarity between the two would 
become identity if the input function were a constant (234). The advantage is that it only 
requires simple calculations (a spreadsheet software suffices)(234). However, only correlation 
(not agreement) was shown between the deconvolution method and this new method (231). 
Indeed, this method is a (fair) estimation of RRF (233) (235). In fact, in case of a perfectly 
monoexponential function, this method equals the RRF. When the input function is not 
monoexponential, this method only gives the RRF in its first part, before the minimum transit 
time (236). 
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Singular Value Decomposition B.1.2.4 
This technique is based on the assumption that R  is limited in time; indeed, for normal 
kidneys, RRF falls to zero after a few minutes. On the contrary, the renogram, containing 
information on  K  and I  lasts usually for a longer time. Therefore, the system is over 
determined. One can take the opportunity to draw only the more relevant part of information 
contained in K  and I  using a technique used Singular Value Decomposition (237), which is 
quite similar to factorial analysis. In fact, this method proved applicable even for increased 
transit times.  

B.1.3 Filtering (curve smoothing) 
Because of Poissonian and physiological noise, exact methods are quite sensitive to noise so 
filtering is recommended to avoid error amplification. Contrarily, the constrained least 
squares techniques do not require any smoothing. Either input function, renogram or RRF 
could be filtered. Diffey proposed an adaptive filter to improve deconvolution by the matrix 
method (20, 238). However, (239), with the matrix method, after comparing a linear filter and 
an adaptive filter on the RRF, they conclude that the linear filter provides better results. The 
classical filter is a linear 1-2-1 filter, applied several times, which reduces to 1-4-6-4-1, 
1-6-15-20-15-6-1 and so on. Non-linear adaptive filters were also proposed (146, 238, 240). A 
drawback of filtering is loss of temporal resolution. Thus, intensive smoothing smears out the 
vascular component of H  and makes the determination of the plateau harder (24). 

B.1.4 Comparison between methods 
The use of different deconvolution methods (along with variations in choice of including 
background subtraction and, smoothing protocols…) can result in RRF with very different 
shapes (230, 241). However, the MTT seems rather robust and does not depends much on the 
deconvolution technique (53, 222, 230, 241). Indeed, the MTT only depends on the plateau 
level and the area under the curve. In dogs, no difference in MTT was found between the 3 
following methods: matrices, Fourier and constrained least square (241). However, data is 
lacking about robustness of dispersion parameters such as PTTI. In situations where noise is 
very low, exact techniques, such as the matrix method, perform better(216). Conversely, 
when the data are very noisy, constrained least square methods perform better (216). If 
retention functions are to be displayed, the output of the matrix algorithm will tend to be 
noisy and some additional smoothing may be advantageous(48). Contrarily, the output of the 
constrained least squares technique will be better-behaved for this purpose.  

C Other Transit indices 
Other transit indices have been reported, without further validation. 

C.1.1 Pelvic Excretion Efficiency (PEE) 
This index is very close to OE but with an additional (probably minor in practice) correction 
for vascular activity (242): 

( )
{

( ) ( )
{

0

t

drainagevascular
uptake

K t c P b P t O t= + × −∫ 14243
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( )
( ) ( )

0

0

t

t

K t c P b P t
drainagePEE t
uptake

c P

− − ×
= =

∫

∫
 

Normal is above 86%. 

C.1.2 Elimination Index (EI) 
The elimination index was defined as the ratio of A3/A20 or (if peak < 3 min) Apeak/A20 

(243) with a normal above 3. 

C.1.3 Carlsen’s method 
A transit time index, expressed in time units, without deconvolution, was also recently 
proposed and tested by simulation in adult data (244). 
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